MobileDoctor - Smartphone Bioelectric Body Monitor

Stacy Yae

Samir Unni, Vinod Ravikumar Mentor: Dr. Barbour (Group #35)

Overview

- 1. Project Need
- 2. Specific Design Requirements
- 3. Design Alternatives
- 4. Analysis in Choosing Design
- 5. Selected Design Details
- 6. Updated Design Schedule
- 7. Team Responsibilities

Project Need

Problem

- 1 in 4 Americans have a cardiovascular disease
- Irregular and intermittent conditions
- Lack of access to medical facilities
- Preventative Care

Solution

• MobileDoctor – portable, wireless ECG monitor with smartphone software program

Specific Design Requirements

Table 1: Quantitative specific design requirements for hardware and software components.

ECG Measurement					
Signal bandwidth	0.05 Hz-150 Hz				
Leads/Channels	12				
Sampling rate	200 Hz				
Heart rate range	30-250 bpm				
Active channels	LL, LA, RA, RL, V1, V2, V3, V4, V5, V6				
Input impedance	≥2.5 MΩ at 100 Hz				
Internal noise (Ch - Ch)	300 μV p-v maximum				
Gain difference (Ch - Ch)	0.1% maximum at DC – 150 Hz				
Data storage	100 MB				
Average processing time	< 60 seconds				
Operating Conditions					
Operating temperature	0 to 40°C (32 to 104°F)				
Storage temperature	-20 to 70°C (-4 to 158°F)				
Pressure	700-1060 mbar				
Operating time	24 hours before recharge				
Power	rechargeable battery				
Lifespan	1-2 years				

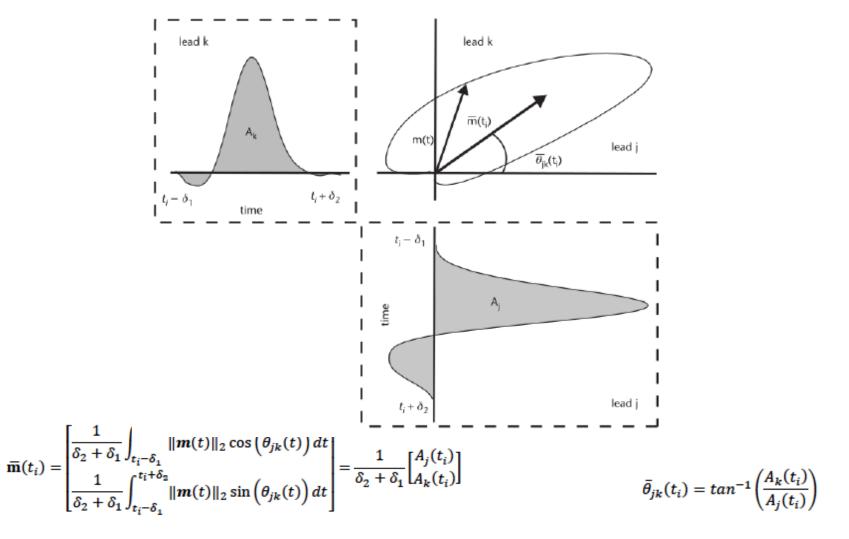
Table 1 (cont.): Quantitative specific design requirements for hardware and software components.

	•						
Mechanical							
Length	≤10.2 cm (4 in)						
Width	≤7.6 cm (3 in)						
Height	≤5.1 cm (2 in)						
Weight	≤300 g						
Stress	181.5 kg (400 lb)						
Housing material	ABS						
Software							
Platform	Android						
Version	2.2+						
Bluetooth Version	2.0+						
Language	Java (on Dalvik VM)						

Design Alternatives

- Form Factor
 - Stationary (PC)
 - Mobile (Smartphone)
- Smartphone Platform
 - Android
 - iOS
- Data Transmission
 - Wired
 - Wireless

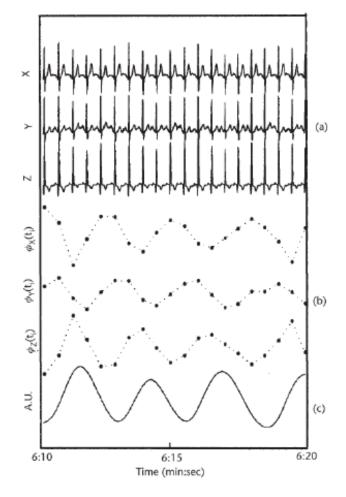
- Environment for Use
 - In-patient
 - Out-patient
- Data Collection
 - ECG
 - Pulse Oximetry
 - Accelerometry
- Analysis Method
 - Algorithmic Analysis
 - Human Analysis
- Arrhythmia Classification
 - Beat Typing
 - Power-Frequency Analysis
 - Beat-to-Beat Statistics


Alternatives / Analysis

• EDR Algorithms

- Preprocessing requirements:
 - QRS complexes detected and clustered
 - Baseline wander attenuated
 - VCG signal available
- Alternatives:
 - Amplitude EDR Algorithms
 - Multi-lead QRS Area EDR Algorithms
 - QRS-VCG Loop Alignment EDR Algorithm

• EDR Algorithms Multi-lead QRS Area EDR Algorithms


Figure 1. The mean electrical axis of a cardiac signal in the plane *jk*.

• EDR Algorithms

QRS-VCG Loop Alignment EDR Algorithm

Figure 2. (a) The vector-cardiogram leads used for the EDR approximation, (b) The EDR approximation using the QRS-VCG loop alignment EDR algorithm, and (c) The actual corresponding respiratory signal.

$$\varepsilon_{\min} = \frac{\min(\varepsilon)}{\gamma, \tau, Q} = \frac{\min}{\gamma, \tau, Q} \frac{\|\mathbf{Y}_{\mathbf{R}} - \gamma \mathbf{J}_{\tau} \mathbf{Y} \mathbf{Q}\|_{F}^{2}}{\|\gamma \mathbf{J}_{\tau} \mathbf{Y} \mathbf{Q}\|_{F}^{2}}$$
$$\mathbf{J}_{\tau} = [\mathbf{0}_{\Delta - \tau} - \mathbf{I}\mathbf{0}_{\Delta + \tau}]$$

$$\hat{\gamma}_{\tau} = \frac{tr(\mathbf{Y_R}^T \mathbf{Y_R})}{tr(\mathbf{Y_R}^T \mathbf{J_{\tau}^T} \mathbf{Y} \widehat{\mathbf{Q}_{\tau}})}$$

$$\mathbf{Y}_{\mathbf{R}}(i+1) = \alpha \mathbf{Y}_{\mathbf{R}}(i) + (1-\alpha)\mathbf{Y}(i+1)$$

Table 2: The Pugh chart quantitatively analyzes the stated alternatives and states which one is the best according to the defined categories.

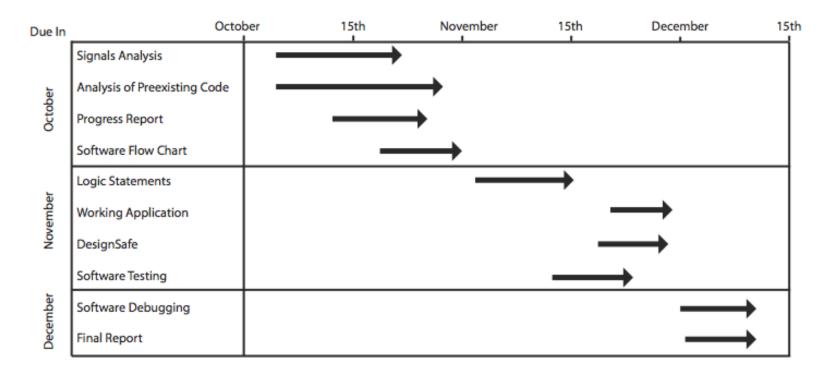
		Cost	Portability	Deadline	Computational Power	Processing Time	Signal Detection	Signal Accuracy	Total Power Draw	Total
	Weight	8	10	10	8	10	10	10	10	
Form Factor	Stationary	8	1	10	8	10	10	10	10	63.8
	Mobile	7	10	10	6	8	10	10	9	67.4
Mobile Platform	Android	8	10	10	8	10	10	10	10	72.8
	iOS	1	10	10	8	10	10	10	10	67.2
Data Transmission	Wired	8	1	10	8	10	10	10	10	63.8
	Wireless	6	10	10	8	9	9	10	7	66.2
Environment	In-patient	6	10	10	8	10	10	10	10	71.2
	Out- patient	8	10	10	8	10	10	10	10	72.8
Data Collection	ECG	8	10	10	8	10	10	10	10	72.8
	Pulse Oximetry	8	10	10	8	10	6	4	10	62.8
	Accelerom etry	8	10	10	8	10	7	7	10	66.8
Analysis Method	Algorithmic	10	10	10	8	10	10	8	10	72.4
	Human	10	7	10	8	7	10	10	10	68.4
Arrhythmia Classification	Beat Typing	10	10	10	10	10	5	4	10	65
	Power- Frequency Analysis	10	10	10	8	8	7	6	10	65.4
	Beat-to- Beat Statistics	10	10	10	7	9	10	10	10	72.6
EDR Algorithms	Amplitude	10	10	10	9	10	5	4	10	64.2
	Multilead	10	10	10	8	8	7	6	10	65.4
	QRS-VCG Loop Alignment	10	10	10	6	6	10	10	10	68.8

- Form Factor
 - Stationary (PC)
 - ✓ Mobile (Smartphone)
- Smartphone Platform
 - ✓ Android
 - **iOS**
- Data Transmission
 - Wired
 - ✓ Wireless
- Environment for Use
 - In-patient
 - ✓ Out-patient
- Data Collection
 - ✓ ECG
 - Pulse Oximetry
 - Accelerometry

• Analysis Method

✓ Algorithmic Analysis

- Human Analysis
- Arrhythmia Classification
 - Beat Typing
 - Power-Frequency Analysis
 - ✓ Beat-to-Beat Statistics
- EDR Algorithms
 - Amplitude EDR Algorithms
 - Multi-lead QRS Area EDR Algorithms
 - ✓ QRS-VCG Loop Alignment EDR Algorithm


Selected Design Details

• Form Factor

- Smartphone software program
- Bluetooth wireless sync
- Software
 - Google's Android mobile operating system
 - Code components:
 - Set-up tutorial
 - Real-time ECG display
 - System checks
 - Data output options
- Environment
 - Out-patient monitoring
 - Patients without easy access to medical facilities

Updated Design Schedule

Design Schedule

Team Responsibilities

- Vinod
 - Target Diseases for Diagnosis
 - Algorithmic Signal Analysis
- Stacy
 - Prototype Construction on Desktop
 - Electrode Placement
- Samir
 - Data Analysis
 - Wireless Interfacing with Electrodes
 - Electrode Placement Directions

References

Acharya, Rajendra, et al. Advances in Cardiac Signal Processing. New York: Springer, 2007.

- Clifford, Gary D., Francisco Azuaje and Patrick E. McSharry. <u>Advanced Methods and Tools for ECG Data Analysis</u>. Norwood: Artech House, Inc., 2006.
- Cozza, Robert, et al. Market Share Analysis: Mobile Devices, Worldwide, 1Q11. New York: Gartner, 2011.
- Ericsson AB, Lenovo, Intel Corporation, Microsoft Corporation, Motorola, Inc., Nokia Corporation, Toshiba Corporation. "Specification of the Bluetooth System." 2010.
- Leanderson, S., P. Laguna and L. Sörnmo. "Estimation of the Respiratory Frequency Using Spatial Information in the VCG." <u>Med. Eng. Phys.</u> (2003): 501-507.
- Riekkinen, H. and P. Rautaharju. "Body Position, Electrode Level and Respiration Effects on the Frank Lead Electrocardiogram." <u>Circ.</u> (1976): 40-45.
- Schloegl, Alois. <u>Biosig</u>. 2011. 25 October 2011 < http://biosig.sourceforge.net/>.
- Zygote Media Group. Google Body Google Labs. 2011. 27 Sep 2011 < http://bodybrowser.googlelabs.com/>.