Mobile Doctor: The Smartphone ECG Monitor

Presenter: Vinod Ravikumar, Group # 35

Partners: Samir Unni, Stacy Yae Mentor: Dr. Dennis Barbour BME Senior Design

Presentation Overview

- ✓ Introduction
- ✓ Background, Need, Project Scope
- Design Requirements
- Existing Solutions and Patents
- Preliminary Analysis
- ✓ Design Schedule
- ✓ Team Responsibilities

http://www.freepik.com/free-photo/hospital-ecg- paper-checking-emergency_473904.htm>.

Context

- US: 25 seconds 1 Heart
 Attack
 - ~28 Heart Attacks in 12 minutes
 - 12 Deaths
- 26% of population affected
- 20 year olds and higher
- 1,255,000 Heart Attacks per year

Background – the Electrocardiogram

- Electrocardiogram (ECG)
 - Detects electrical activity during cardiac cell depolarization
- ♦ Two electrodes' output = 1 Lead
 - Placement determines a vector from point-point potential difference
- Resting, Ambulatory, Stress Test

http://library.med.utah.edu/kw/ecg/ecg_outline/Lesson1/lead_dia.html

Need

- Outpatient Monitoring
- ♦ Need #1
 - Pre- and post-operational ECGs are required for most medical procedures
 - Contributes to high medical costs for both patients and insurance companies
- ♦ Need #2
 - Outside of the big cities, there are far fewer medical specialists, particularly cardiologists, cardiovascular disease specialists, and cardiac electrophysiology specialists
 - MobileDoctor can be used as a remote diagnostic tool by any medical aide
 - The city-centered doctor can receive this patient's data in real time and can advise them to come in for a check up if necessary

Project Scope

How does MobileDoctor addresses this need?

✓ Components

- Wearable device to measure bioelectrical data
- ✓ Smartphone application that syncs with this device to collect and interpret incoming ECG waveforms
- ✓ Bluetooth connection
- Program outputs whether a patient has a disease, and if so, what type of cardiac dysfunction

✓ Software

- Android
- Diagnosis will be easily comprehensible and will explain fundamentals of the disease
- Patient should follow up with additional medical assistance from a provider

Specific Design Requirements

ECG Measurement	
Signal bandwidth	0.05 Hz-150 Hz
Leads/Electrodes	12/10
Sampling rate	200 Hz
Heart rate range	30-250 bpm
Active channels	LL, LA, RA, RL, V1, V2, V3, V4, V5, V6
Input impedance	≥2.5 MΩ at 100 Hz
Internal noise (Ch - Ch)	300 μV p-v maximum
Gain difference (Ch - Ch)	0.1% maximum at DC – 150 Hz
Data storage	100 MB

Specific Design Requirements Continued

Operating Conditions	
Operating temperature	0 to 40°C (32 to 104°F)
Storage temperature	-20 to 70°C (-4 to 158°F)
Pressure	700-1060 mbar
Operating time	24 hours before recharge
Power	rechargeable battery
Lifespan	1-2 years
Mechanical	
Length	≤10.2 cm (4 in)
Width	≤7.6 cm (3 in)
Height	≤5.1 cm (2 in)
Weight	≤300 g (0.6614 lb)
Stress	181.5 kg (400 lb)
Housing material	ABS (Plastic)

Existing Solutions and Patents

AliveCor's iPhone ECG

AliveCor

- Snap on iPhone case
- ♦ 2 electrodes
- Records about a minute of data
- Easy-to-use

Disadvantages

- Far fewer leads versus MobileDoctor
- No Analysis software

Patent # 7,933,642

- Encompasses AliveCor idea
- Wireless ECG system
- ♦ Transmits information to the base station (iPhone)

iRhythm Technology's Zio

Zio

- Adhesive electronic patch
- Records 45 seconds of data
- Patient must hold button during recording
- ♦ 1-channel ECG
- ♦ Transfer data to a base station

Disadvantages

- Patient input is a subjective measure
- Small quantity of data acquisition
- Recording is inconvenient for patient
- Only 1 channel
- No real time data acquisition
- No instant data analysis

Patent # 7,904,133

- ♦ Wearable wireless device for monitoring, analyzing, and communicating physiological status
- ♦ Adhesive surface electrodes
- **♦** ECG monitoring
- Wireless transfer of data to a base station

SmartHeart

SmartHeart

- Chest Strap Electrodes
- Smartphone connectivity
- Sends information to doctor's office

Disadvantages

- Does not have built-in analysis
- **♦** Cost \$499
- Targeting private buyer market

Patent # 7,896,811

- ♦ Portable device having biosignal measuring instrument
- Electrodes relay information to a portable unit
- ♦ Ambiguous analysis component

Analysis, Schedule, Responsibilities

Terminology

♦ RR Interval

- QRS
 - **60-100** ms
 - \wedge A = 3-5 mV

- P Wave
 - ♦ 80-110 ms
 - ♦ Amplitude <.25 mV

- T wave
 - ♦ 120 ms
 - \wedge A = .25 mV

Case: Ventricular Fibrillation

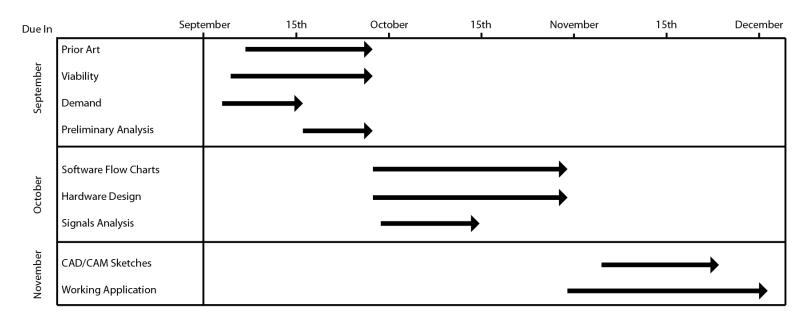
Characteristics

- Arrhythmia
- Quivering of muscle fibers
- Insufficient blood pumped from ventricles
- Cardiac death

ECG

- Irregular contractions
- High frequency of low amplitude waveforms
- Wandering baseline

Logic


QRS threshold = .8 mV QRS counter

If amplitude of waveform is greater than threshold, increase qrs count by 1

Frequency of qrs<frequency of a heart beat = Ventricular fibrillation!

Design Schedule

Design Schedule

Team Responsibilities

- Vinod Ravikumar
 - Signal analysis research
 - Logical steps for software

- Samir Unni
 - Incorporation of Bluetooth
 - ♦ Translate logic to code

- Stacy Yae
 - Hardware Specifications
 - CAD/CAM sketches
 - Website

References

- ♦ Dr. Dennis Barbour, MD, PhD
- http://www.freepik.com/free-photo/hospital-ecg-paper-checking-emergency_473904.htm
- "15. 12-Lead ECG System." *Bioelectromagnetism*. Web. http://www.bem.fi/book/15/15.htm.
- "AHA Statistical Update." American Heart Association, 15 Dec. 2010. Web. http://circ.ahajournals.org/content/123/4/e18.full.
- "CDC DHDSP Heart Disease Facts." *Centers for Disease Control and Prevention*. Web. http://www.cdc.gov/heartdisease/facts.htm.
- "Digital Multimeter Measurement Techniques and Definitions Developer Zone National Instruments." NI Developer Zone. Web. http://zone.ni.com/devzone/cda/tut/p/id/3296#toc2>.
- "ECG Timeline History of the Electrocardiogram." Web. http://www.ecglibrary.com/ecghist.html.
- Fulford-Jones, Thaddeus, Gu-Yeon Wei, and Matt Welsh. "A Portable Low-Power, Wireless Two-Lead EKG System." Proc. of 26th Annual International Conference of the IEEE EMBS, CA, San Francisco. Web. http://www.eecs.harvard.edu/~mdw/papers/ekg-embs04.pdf.
- "Heart Signals." *Boston.Scientific.* Web. http://www.bostonscientific.com/templatedata/imports/HTML/CRM/heart/heart_signals.html.
- "H&H Medical Corporation Specifications for the Simple ECG Hand Held ECG Monitor." *H&H Medical Corporation Elite Diagnostic Solutions for Home Healthcare, Clinics, Sports Medicine & Dental.* Web. http://www.hhmedicalcorp.com/specifications.html.
- Low Pass Filter." *Basic Electronics Tutorials and Revision*. Web. http://www.electronics-tutorials.ws/filter_1.html.
- The Electrocardiogram Looking at the Heart of Electricity." *Nobelprize.org*. Web. http://www.nobelprize.org/educational/medicine/ecg/ecg-readmore.html.
- "Practical Considerations: OPERATIONAL AMPLIFIERS." All About Circuits: Free Electric Circuits Textbooks. Web. http://www.allaboutcircuits.com/vol_3/chpt_8/13.html.
- "Revolutionary ECG Solutions." 2008. LifeSync. Web. http://www.lifesynccorp.com/assets/pdfs/reference/Product_Spec.pdf.

Thank You